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LIKELIHOOD RATIO STATISTICS FOR AUTOREGRESSIVE
TIME SERIES WITH A UNIT ROOT

By Davib A. DICKEY aAND WAYNE A. FULLER

Let the time series ¥, satisfy ¥, = a +pY,_, + ¢, where ¥, is fixed and the &, are
normal independent (0, ¢®) random variables. The likelihood ratic test of the hypothesis
that (o, p) = (0, 1) is investigated and a limit representation for the test statistic s pre-
sented. Percentage points for the limiting distribution and for finite sample distributions
are estimated. The distribution of the least squares estimator of a is also discussed. A
similar investigation is caonducted for the model containing a time trend.

1. INTRODUCTION

LET ¥, SATISFY THR MODEL
(L.) Y=a+pY,_ | +e (r=23,....n),

where Y, is fixed and {e¢,} is a sequence of normal independent random variables
with mean 0 and variance 6, [e,~NI(Q, %)}. The maximum likelihood estimators
of p and a, conditional on ¥, are the least squares estimators

E) ]

(1-2) ﬁp, = :gz( Y:—l _P(— |))2 2:2(1;: _P(O)J(Yr—l _)7(—1)):

&, = Py = BF(— 1)
where 5, =(n— )7'3%.,7,,, fori= —1,0.

The statistic constructed by analogy to the regression *r statistic® for the
estimated a is
T = S,'a
ap ap s

where

2 g2
Sex = Seu

(n—1)7" "‘J_’(iﬂ)[éz(yz—l ‘)7(—1))2}_[}

Sa= (=3 R (Y4 - pY )"
=
An alternative model for ¥, is
(1.3) Y=a+ A(t—1—4n)+p¥,_, +e (t=23...,n),

where Y| is fixed and e,~NI(0,6%). Let X denote the (n — 1) X 3 matrix whose
ith row is (l,i —4n,Y) and let ¥ =(Y,,¥,,..., ¥,). Then the least squares
1057



1058 D. A. DICKEY AND W. A. FULLER
estimator of 8 = (&, f,p0) is
(14) 8 =(&, f.5)=(X'X)"'X'Y.

Let C,;r,- denote the jjth element of (X'X)~'. Then the “regression ¢ statistics” are

el

(15) 7, =(CuS2) 4,

(16) 1::6‘4' = (Cllsezr)_ : éﬂ
where
(L7 Si=(n—47'¥V[I-X(X'X)"'X']Y.

We shall study the likelihood ratio test of the hypothesis that (a, p) = (0, 1) for
model (1.2), the likelihood ratio test of the hypothesis that («, 8, p) = (0,0,1) for
model (1.3}, and the likelihood ratio test of the hypothesis that (a, £, p) = (a,0, 1)
for model (1.3). We also investigate the distributions of &,, ;ap,c‘cr, ﬁ,,, 7., and ’F,ev
under the null model.

The likelihood ratio statistics are derived in Section 2 and the limiting
distributions presented in Section 3. Percentage points for the distributions
obtained hy Monte Carlo methods are given in Section 4. In Section 5, it is
shown that the limit distributions of the test statistics are unchanged when {e,} in
(1.1) and (1.3) is replaced by a stationary pth order autoregressive process whose
coefficients must be estimated. In Section 6 the powers of the likelihood ratio
tests ®,,P,, and P, are compared to the powers of other test statistics. Section 7
contains an illustration of the use of the test statistics.

2. LIKELIHOOD RATIO STATISTICS

We construct the likelihood ratio statistics for the null hypothesis that the true
moadel is a random walk with zero drift. We consider first the test that {a, 8,p)
=(0,0,1) in model (1.3) against the alternative that the null is not true. The
logarithm of the likelihood function for a sample of # observations from model
(1.3}, conditional on ¥, is

logL = — 3(n— 1}log(27) — (n — l)loga
_(202)_l Zﬂ: [Yi—a—fB(r—1-4in) —pY{_l]Z.
=2

Under the null hypothesis, H;:(a, 8,p)=(0,0,1), the likelihood is maximized
with respect to a® to obtain

= (n~ 1) S (Y, ~ Y, )R

f=32

Under the alternative hypothesis the maximum of the likelihood oceurs at
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(41, 6"), where 8, was defined in (1.4) and 62 = (n — 4)(n — 1)~ 'S2. Therefore the
likelihood ratio is
[65',)" " =[1+3(n - 4)“@2]%"’"’,

where

=(352) [(n— )& — (n - 9)S2].

Thus, the likelihood ratio test tejects the null hypothesis for large values of
®,, where &, is the usual regression “F test” of the hypothesis H,:(a, 8,p) =
(0,0, 1).

In a similar manner, it can be shown that the likelihood ratio statistic for
testing Hy,:{a,p) = (0, 1) against H, : Not H,, for the model (1.1) is

Loy
[1+201-3)" 2, 7Y,

where

®, = (252) [(n— 1)83 — (n - 3)S2].

The likelihcod ratio test of the hypothesis Hy:(a, 8,p) = (a,0,1} in model
(1.3) is a monotone function of

=(252)" [(n-l){oo Gy ~ j(_l))z}__(n—él)sf,].

The statistics ®, and ¥, are the common regression “F tests” one would
construct for the hypotheses. The null hypothesis for test &, is that the time series
is 4 random walk with drift «. It is easily demonstrated that the distribution of
the test statistic @, does not depend upon a.

3. LIMITING DISTRIBUTIONS

Under the null hypotheses, the statistics introduced in Sections 1 and 2 can be
expressed as functions of a few sample statistics. Let

Gl T,=(n-1)" g(g )2

r-.-l-

W,,=(n_1)—%§](n_r)e, (=1,

n—1

V,=(n- 1) 21 (n = 0)(t= e,
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Then, for example,

(n— l)%&n =T, —(n= 1), - )W,

and
(n—1)(p, — 1) = (T, — W,})"[ % [(T +(n = 1)‘%,)2
—(n~- 1)"%;3} - T,,W,,}
(=
= (T, - W) (H(T2-?) - T,W,} + O, (n" 7).
Because T, and W, are odd functions of (e,,e;,...,¢)=¢, and [, is an

even function of ¢,, the distributions of &, and ,, are symmetric. Given that
62 =1, Dickey and Fuller [7} have shown that [[',,7,, W,, V,,n(p, — 1)] con-
verges in distribution to (I, T, W, V, 8), where

r=Sy222 T=13 24,2,

i=| i=1
X1 = 3 \
W= 2 2571'121': V= z (23"!';'3 - 237:'2)2;':
i=1 i=]

8= - W) [yT*—1)- TW],

2 i+l
Y,-=m(‘l) .

and {Z}72, is a sequence of normal independent (0,1) random variables.
Therefore, given that (a, ) = (Q, 1),

n%a_‘&pgT— SW,
and
(3.3 'rdp—>(T-— SW)(F— W ) r-z,

because S,i converges in probability to a.
For model (1.3) with the assumption that 8’ = (0,0, 1), we have

1 0 (n~1)iW,
XX=(n-1) 0 127 'n(n - 2) {(n— 1)%Vﬂ -
(n— )W, s(n— 13V, (n—1T,
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Letting D, = diag[(n — 1)%, (n— 1)%, (n — 1)a], we obtain
G4 D X'XD 'S4,

G5 e DINXY - X'X0) S S,

where
| 0 W
o L 1y
A= 12 2
!
14 3 Vv T

and f=[T,3T - W,L(T? - 1)]. The matrix A is invertible with probability 1
and it is readily verified that

o+ W 6Yw -w

-1 -1
(36) AT =07 syw  120+36VE —6V|
—w -6V 1

where @ =T — W? — 3V2 Thus
s~'D,6,—0) 54"

The third element of 4~ f is the limit randem variable for n#(g, — 1) given in
Dickey and Fuller [7]. Using the fact that §2 converges in probability to a2, we
obtain

- d L

—1

.= Q1@+ W “(1,0,047Y,

t 5 01120 + 367 7(0,1,0047 Y,

o, 527 T2+ 83T — W?),

&, 53 \p 4 ly= 3T 24T - W)+ 72,

0,527 (A - T = 271237 W)+ A,
and

. -4

,=(-Ww?-3V? (T - WNT—6V)—1].

The limiting distributions hold for any fixed ¥, and for ¢, a sequence of
independent identically distributed random variables.
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TABLEI
EMPIRICAL THSTRIBUTION OF 1, FOR (@, p) = (0, [)IN ¥, = a +p¥,_ | + ¢,.
(Symmetrnic Distribution)

Sample Prabability of a smaller vafue
size
" 0.90 0.95 0.975 0.99
25 21 261 297 341
50 218 2.56 2.89 3.28
160 217 1.54 186 11
250 216 2.53 1.84 3.19
500 2.16 152 183 3.18
=4} 216 2.52 283 318
5.8, 0.003 0.004 0.006 0.008
TABLE II

EmpIRICAL DHSTRIBUTION OF -r;, FOR (e, B,p) =00, 1)IN ¥, =a+ Bt +p¥,_ | + ¢,.
(Symmetric Distribution)

Sample Prabability of a smaller value
size
n Q.90 0.95 04975 0.93
15 177 320 159 4.05
50 275 314 347 187
100 2.73 i 342 378
250 27 3.09 3.39 374
500 17 3.08 338 3.72
o0 272 3.08 3.38 371
s.e. 0.004 0.005 0.007 0.008
TABLE 1I1

EMPIRICAL DISTRIBUTION OF »r;, FOR (&, B,p)=({0,0,)IN Y, =a+ 8t +pY,_, + ¢
(Symmetric Distribution)

Sample Prahability of a smaller vaiue
ke
n 3940 395 0.97% 099
15 13 285 3.25 174
50 2.8 2381 3.18 3.60
100 2.38 179 314 3.53
250 2,38 2.79 312 349
500 238 2.78 in 348
o0 238 2.78 311 346

s.e. 0.004 0.005 0.006 0.003
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TABLE IV
EMPIriCAL DISTRIBUTION OF @ FOR (a0, ;)= (0, 1} IN ¥, = a + aY,_ + ¢

Probability af a smaller valuc

Sample

S2E
n 0. 0.025 0.0% 410 .90 095 0.975 0.99
25 0.29 0.38 0.49 0.65 4.12 5.18 6.30 7.8%
30 0.29 0.39 0.50 0.66 3.94 4.86 5.80 7.06
100 0.29 0.39 0.30 0.67 3186 47 5.57 6.70
250 0.30 .39 0.51 0.67 381 4.63 5.45 6.52
500 0.30 0.39 0.51 .67 179 461 5.41 6.47
o0 0.30 0.40 0.51 .67 378 4.59 3.38 6.43
s.e. 0.002 0.002 0.002 0.002 0.01 002 .03 (.05

TABLE V
EmpiricaL DISTRIBUTION OF @, FOR (&, B, p)=(0,0, )N Y, =a + Bt +p¥,_ | + ¢

Sample Prabability of a smaller value
St"&e .41 0025 008 0.10 .50 0935 0.97% . 0.9%
15 0.61 0.75 0.89 1.10 4.67 5.68 6.75 8.21
50 0.62 037 0.91 112 4.31 5.13 5.94 1.02
100 063 0.77 .91 1.12 4.16 4.88 5.5% 6.50
250 0.63 a.77 0.91 1.13 4.07 4.75 5.40 6.21
500 0.63 0.77 0.92 1.13 4.05 4.71 535 6.15%
@ 0.63 037 0.92 1.13 4.03 4.68 5.31 6.09

5. 0.003 0.003 0.003 0.003 0.01 0.02 0.03 0.05

TABLE VI
Emprricar DISTRIBUTION OF $; FOR (&, 8,p) = (2,0, DINY, = a+ Bt +pY,_ | + &

Sample Probability of a smaller value
size

”" .M 0.025 0.03 Q.10 .90 0.95 0975 0.99

15 0.74 0.90 1.08 .33 5.91 7.24 8.65 [0.61
50 0.76 0.93 LLL 1.37 S.61 6.71 7.81 9.31
100 0.76 0.94 112 1.38 5.47 6.49 7.44 873
250 .76 094 1.13 1.3 5.39 434 7.25 8.43
500 076 0.94 .13 1.39 5.36 6.30 7.20 8.34
o 0.7 0.94 .13 1.39 5.34 6.25 7.14 827

s.e. 0.004 0.004 0.003 0.004 0.015 0.020 0.032 0.058




1064 D. A. DICKEY AND W, A. FULLER

4, SIMULATION

Tables I-VI contain percentiles for the null distributions of the “regression ¢
statistics™ ('Fam, gm,;m), and “regression F tests” (@, ®,, ®;). The null model is
given. in ¢ach table.

The empirical distributions of the statistics for finite samples were created
from statistics for samples generated by the model with ¥, =0and ¥, = ¥,_ | +
e, =213 ..., n, for n =125, 50, 100, 250, and 500. Three replicates of 50,000
samples were generated for n = 25, two for » = 50, 100, and 250, and one for
n = 500. The simulation of the limit case was conducted using the procedure
given in Dickey [6]. Three replicates of 50,000 were generated for the limit case.
For symmetric distributions, cells equidistant from zero were pooled to create a
symmetric histogram.

For each of the six estimators and for each sample size, the 0.01, 0.025, 0.05,
0.10, 090, 0.95, 0975, and 0.99 percentage points of the distributions were
calculated. These empirical percentiles were then plotted against n. Based on the
plots, regression functions of the form P = a + An" were fitted to the percentiles
of the empirical distributions. Because several observations on each percentile
were availabie for n = 25, 50, 100, 250, and for the limit case, regression F tests
for lack of fit for the smoothing regressions were computed. Of the 36 lack of fit
statistics computed, 7 were significant at the 0.25 level, 2 at the 0.05 level, and
none at the (.01 tevel. The regression smoothed percentiles are given in Tables [
through VI.

David [5, Section 2.5] gives a method for constructing distribution free
confidence intervals for the percentiles of a distribution based on empirical
percentiles. In Tables I through VI the number in the row labeted “s.e” is the
largest of the two half lengths of the 68.26% confidence intervals constructed for
n =125 and for the limit case. These entries provide an upper bound for the
estimated standard errors of the regression smoothed percentiles.

The histogram. ﬂ# for 50,000 samples with n = 25 is shown in Figure 1. Figure
2 contains the histogram for 7,4, constructed from 50,000 samples of size n = 25

[ —— s 1 1 i
T T T

6 3 0 3 6

Fisurk | —Histogram for 50,000 values of -r:m constructed with 7 = 25,
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e 1 s i 'l
L) L) L3

Li T
-6 -3 (2] 3 6
Fraure 2.—Histogram for 50,000 values of r:ﬂ, constructed with 2 = 25,

generated with 8 = (0,0, 1). The distributions are symmetric and the histograms
were constructed to be symmetric. The distributions of the t statistics are
distincetive in two respects; the distribution is bimodal and the “spread™ of the
distribution is much targer than that of Student’s ¢ distribution.

5. DISTRIBUTIONS FOR HIGHER ORDER PROCESSES

In this section we demonstrate that the test statistics investigated in the
previous sections can be applied in higher order autoregressive processes. Con-
sider data generated by the model

3.1 Y, =0,
Y,=Y,_, +2 (t=23,...),
where

Zi - ﬁlz!_l + 6221__1 + P + QPZ'{'_P + e:

is a stationary autoregressive process and the e, are NIIX0, o) random variables.
The model can also be written

P
Y, =pY,_  + 2 9:'(Yz-:' - Yr'—l—:‘) + e,
i=1

where p=1 and Z, =Y, — Y,_,. To simplify the presentation we assume,
without loss of generality, 62 = 1.
Consider the regression equation

.
Yip=a+t B[: —in-p+ l)] oY, t 2]8!.2!.+p_i+ €4 p

t=12...,n—p. Let H, denote the (p + 3) X (p + 3) sums of squares and
products matrix needed to compute the regression, let M, denote the square roots
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of the diagonal elements of H,, lety, = (a, ,0,8,,6,. ..., ), and let ¥, denote
the least squares estimator of y,. Then

Mn(?n - Yn) = [Mn— lHnMn_ ! ] - an_‘ Igm

where
n—p
g = 21 (l,[f - %(" -pt I)J’ Yt+p-|!z:+p~13 ces Zr)’eﬁ-p'
=

Fuller [8, p. 374] has demonstrated that n~ Y, is converging to n 7 -
(1 — 37_,6)"'Si_ 1€ as ¢ increases. By the results of Fuller, we have

n i3 zZ,= Op(n_%),
=2

22 Y2 = O,(nh),
=

A

nrY [t=d(n+p— )] Z, = 0,(n"%),

t=1

"
2 Y Z = Oy (n).

f=2

Therefore

plim M, "H M,~' = block diag(H,,, Hy,),

1 0 T-iW
H), = 0 1 I‘_%3%V’

r=:w -3 |

H,, is the p X p correlation matrix of the process Z,, and I', W, and V are as
defined in (3.2). It follows that the limiting distribution of the vector composed of
the first three elements of M, (¥, — v,) is the same as the limiting distribution of

n 1
l:n%ann% ﬁf’ ( 2 Y.ri—l) (ﬁf - l)}
=2

discussed in Section 3. Similar results are easily obtained for the regression that
does not contain the time trend.

6. EMPIRICAL POWER OF TESTS

Tables VII-IX were constructed to give information on the power of the tests.
In Table VII the power was computed for samples of size # = 100 generated for
model (1.1} with p = 0.8, 0.9, 0.95, 1.00, 1.02, and 1.05 and a = 0.0, 0.5, and 1.0
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TABLE VIII

EmpIricaL PoweR or Two SIDED 5128 (105 TESTS AGAINST THE STATIONARY ALTERNATIVE
FOR SAMPLES OF n = 50, 100, aND 250 {20,000 SAsMPLES)

a=08 p=09 a=1095 a=099 g= 1.0

L] L8 o n H

Statigtic 50 o 250 50 100 150 50 100 250 50 100 250 30 14} 150

&, 025 080 1.0 009 024 094 005 009 037 005 005 005 005 0.05 005
D, 0.09 04 1.0 004 0.10 064 004 0.04 015 0.04 004 004 005 005 005
&y 017 059 1.0 008 0.16 078 006 007 023 006 005 006 005 005 005
g, —1) 030 087 10 010 029 097 005 009 043 005 004 005 005 005 005
1:\,. 020 074 10 007 019 091 004 006 031 004 004 004 0.05 005 005
n(ﬁT: Iy 014 057 10 006 Q.14 078 005 005 021 005 004 004 005 005 0.05
911 048 1.0 005 011 069 004 005 0le 005 004 004 005 005 0405

TABLE X
Empirical Power oF ONE SIDED SizE 0.05 TESTS FOR SAMPLES OF S1ZE 100( ¥, FixED)
a=08 p=09 p =045 p=099 a= 100
& a -3 -3 &

Statistie 000 050 140 000 050 1400 000 0350 00 000 050 100 000 050 1.00

d 097 095 089 053 031 003 023 001 000 008 0.00 000 003 000 0.00
nip, — 1) 095 095 096 046 042 029 0.9 0.06 000 007 000 0.00 005 000 0.00
1:; 086 090 095 030 043 073 0.12 021 066 0.06 004 020 005 000 0.00
n{d,— 1) 073 072 072 024 020 012 010 006 00F 0.05 004 002 005 005 006
T, 0.64 0467 078 018 022 034 008 009 015 005 004 003 003 005 005

T

Far o = pawer is computed from 10,000 samples,
Far a = 0 power is computed from 3000 samples.

The statistic ®, is the likelihood ratio test of (a, p) = (0, 1) against the alterna-
tive {a,p) # (0, 1) for model (1.1). The statistic ®, is the likelthood ratio test of
(a, B,p)=1(0,0,1) against the general alternative of maodel (1.3). Note that in
models (1.1) and (1.3) the initial value ¥, is fixed. Because the alternative is
broader for ®,, ¥, displays smaller power than @, in Table VII where the
parameter # =0 for all examples of the table. Both ®, and $, display bias,
having power less than the size for p = 0.99, The power of both tests increases as
« increases.

The statistic @, is the likelihood ratio test of (e, 8,p) = (,0, 1) against the
general alternative of model (1.3). In Table VII the power of &, is between those
of @, and @, for p <.99. At p = 1.02 and & = 0, the power of @, is considerably
less than the powers of ®, and ®,. No bias is evident in @;. .

We have included in Table VII the statistics §,,4,,7,, and r, discussed by
Fuller 8, Section 8.5]. The null distributions of the statistics §, and 7, are
computed under model {1.1) with the assumption that (e, p) = (0, 1}. The distri-
butions of the statistics for (a, 1),a # 0 differ from those with & = 0. The null
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distributions of the statistics ¢,,4,, and 7, are independent of « and therefore
they maintain their size for p = ] and & 7= 0. The tests used for Table VII were
constructed from §,.,4,,7,, and 7, by removing equal areas from the two tails of
the distribution. The tests 7, and 7, are generally less powerful than the corre-
sponding tests ®, and ®, when p < 1.

Table VIII contains the estimated power for the test statistics against the
stationary first order autoregressive time series. The tests are the two sided tests
of Table VII. The observations for p# 1 for the samples of Table VIII were
generated using the model

Y,=pY,_ te (1=23,...,n),

Y,=(l—p2)_%el (1=1),

where the ¢ are NID(G, 1) random variables. The power was computed for
20,000 samples of each of the three sample sizes. Generally speaking g, is the
most powerful of the tests considered. The test ®, is the most powerful of the
tests that permit the null model to contain drift.

Table IX contains the power for one sided tests when the true model is (1.1)
with p < 1. Included in this table is the von Neumann ratio

a-n B, —y—,,f]_'gm Y )

t=1

where

Sargan [15] gives percentiles for 4 when ¥, is generated by model (1.1} with
(o, p) = (0, 1). For sample sizes 50 and 100 and significance level 0.05 we use the
percentiles from Sargan’s paper. The jth percentile of the limit distribution for 4
is the reciprocal of the (100 — j)th percentile in the table of Anderson and
Darling [2, p. 203]. For finite sample sizes not considered by Sargan, we use the
asymptotic percentiles as critical values for the power calculations of Table IX.
Fuller [9] has constructed modifications of the statistic 4 that are applicable to
higher order autoregressive processes and to model (1.3). The methods used to
generate the samples of Table [X are those used to generate the samples of Table
VII with p < 1. The statistic 4 is an appropriate test when the alternative is that
Y, is a stationary first order autoregressive time series. It displays good power for
this alternative (that is, when a = 0 and p < 1). The statistic n(3, — 1) is only
slightly less powerful than & for & = 0 and maintains somewhat better power for
a7 0. For p < | and & # 0 the estimator §, 1s closer to one on the average thap
the corresponding estimator associated with a = 0. Therefore, the tests 5, and 7,
display poor power for values of p close to one and « % 0. Because the estimator
f, converges to p for p < 1, there is some sample size for any p < 1 for which the
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TABLE X
MoDELS AND TEST STATISTICS

Test

MNull Model Alternative Model Statistie
Y ,=Y,_ +e Y=a+p¥,_;+e @,
Y=Y,_,+e Y=at+ fr+pY,_, +e &,
Yy=a+7¥_,+e Y=o+ ft+pY,_+e &,
Y=a+p¥,_,+¢ P
Y,=Y¥,_,+e ! ! ! p“,f;
pl
Y=a+pft+pY,_ |, +e . A
Y=a+ ¥, _ +e i =T Py T
p¥l
YV,=a+pY,_ |+ ¢
V=¥ +e ‘ Plamt™T & d
ol < 1

2Paar power far ¥, nat stationary, « » 0, small 1, and p less than, but close ia ane.

statistics will have power greater than the size. Because the null distributions are
derived under the assumption that («,p)=(0,1), there is no sample size for
which the tests 4, 8,, and 7, are appropriate if the alternative includes & 7 0 and
p=1

The test statistics discussed in this section and the hypotheses for which they
are appropriate are summarized in Table X.

7. EXAMPLE

To illustrate the use of the tables we study the logarithm of the quarterly
Federal Reserve Board Production Index 1950-1 through 1977-4. We assume
that the time series is adequately represented by the model

(7.1) Yi=f+Bit+taY _+a¥,_— Y. j)+e,

where e, are independent identically distributed (0,6%) random variables. The
ordinary least squares estimates are

¥,— Y, = 052 + 0.00120r — 0.119 Y,_,+ 0498 (Y,_, — ¥,_,),
(0.15) ~ (0.00034) (0.033) (0.081)

R.5.8.= 0.056448,

Y- Y,_,= 00054 + 0447 (Y,_, - Y,_,), RS.S.=00632l1,
(0.0025)  (0.083)

Y,— Y,_,= 0511 (Y,_, — ¥,_;), RS.S.=0.065966,
(0.079)

where R.8.8. denotes the residual sum of squares. The numbers in parentheses
are the quantities output as “standard errors™ by the regression program.
To test the hypothesis that 8, = 8, = 0 and o, = | against the general alterna-
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tive (7.1} we compute

_ 0.065966 — 0.056448 _
®, = 3(0.000533) 395,

where 0.000533 = 0.056448 /106 is the residual mean square for the full model
regression. As there are 110 observations in the regression the 97.5 per cent point
of the distribution of ®,, as given in Table V, is 5.59. Therefore the hypothesis
Ao= B, =0and a, = | is rejected at the 2.5 per cent level.

To test the hypothesis that £ =0 and a, = 1 against the general alternative
(7.1) we compute

_ 0.063211 — 0.056448 _
® 2(0.000533) 6.34.

The 95 per cent point of the distribution is given in Table VI as 6.49 and the
90 per cent point as 5.47. Therefore at the 5 per cent level one could accept the
hypothesis that the second order autoregressive process has a unit root with
possible drift under the maintained hypothesis that the process is second arder.
The null hypothesis would be rejected at the 10 per cent level. We note that on
the basis of Table 8.5.2 of Fuller [8] the statjstic

- _ —0.119 _ _
= 5033 3.61

would lead to rejection of the hypothesis of a unit root at the 10 per cent level if
a two sided test is performed. If the alternative is that both roots are less than
one in absolute value the hypothesis of a unit root is rejected at the 5 per cent
level.

North Carolina State University
and
fowa State University

Manuscript received June, 1978; final revision received April, 1980.
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